Wear OS by Google developer preview

Posted by Hoi Lam, Lead Developer Advocate, Wear OS by Google

Today we launched the Wear OS by Google developer preview and brought Android P platform features to wearables. The developer preview includes updated system images on the official Android Emulator and a downloadable system image for the Huawei Watch 2 Bluetooth or Huawei Watch 2 Classic Bluetooth. This initial release is intended for developers only and is not for daily or consumer use. Therefore, it is only available via manual download and flash. Please refer to the release notes for known issues before downloading and flashing your device.

In this release, we would like to highlight the following features that developers should pay attention to:

  • Restriction related to non-SDK methods and fields: To improve app compatibility, Android P has started the process of restricting access to non-SDK methods and fields. Developers should make plans to migrate away from these. If there is no public equivalent for your use case, please let us know.
  • Dark UI system theme: To enhance glanceability, Wear OS has switched to a UI theme with a darker / black background for the notifications stream and system launcher since the start of the year. This is now also the default for the system theme and should improve the glanceability for wear apps. Developers should check the accessibility of their app’s UI after this change.
  • Limited background activity: To improve power, apps will no longer be allowed to run in the background unless the watch is on the charger. Developers should note that Wear OS is going further with Android’s app standby feature than some other form factors. Exceptions to this include watch faces and complications that the user currently has selected. This feature will be rolled out gradually in the developer preview, so you may not see it immediately on your device, but should build your apps accordingly by removing background services.
  • Turning off radios when off body: To improve power, bluetooth, WiFi, and cellular radios will be turned off when the watch is detected to be off body for an extended period of time. Again, this feature will be rolled out gradually so you may not initially see it on your device. If this feature causes challenges in your development process, you can disable the feature via adb; please follow the instructions in the release notes.
  • WiFi off when BT is disconnected: To improve power, the device will no longer automatically connect to wifi when disconnected from bluetooth. Exceptions include if an app is requesting a high bandwidth network or if the watch is on the charger. This feature will be rolled out gradually so you may not initially see it on your device.

Please give us your feedback

We expect to provide several updates to this preview before the final production release. Please submit any bugs you find via the Wear OS by Google issue tracker. The earlier you submit them, the higher the likelihood that we can include the fixes in the final release.

Android Studio 3.1

Posted by Jamal Eason, Product Manager, Android

We are excited to announce that Android Studio 3.1 is now available to download in the stable release channel. The focus areas for this release are around product quality and app development productivity. In addition to many underlying quality changes, we added several new features into Android Studio 3.1 that you should integrate into your development flow.

New to Android Studio 3.1 is a C++ performance profiler to help troubleshoot performance bottlenecks in your app code. For those of you with a Room or SQLite database in their your app, we added better code editor support to aid in your SQL table and query creation statements. We also added better lint support for your Kotlin code, and accelerated your testing with an updated Android Emulator with Quick Boot. If any of these features sound exciting or you are looking for the next stable version of Android Studio, you should download Android Studio 3.1 today!

Check out the list of new features in Android Studio 3.1 below, organized by key developer flows.

What’s new in Android Studio 3.1

Develop

  • Kotlin Lint Checks Since announcing official Kotlin language support last year on the Android platform, we continue to invest in Kotlin language support in Android Studio. In Android Studio 3.1, we enhanced the Lint code quality checks so that now you can run them via the command line as well as from the IDE. Just open a Android Studio project, and run gradlew lint via command line. Learn more.

Kotlin Lint checks via command line

  • Database Code Editing Editing inline SQL/Room Database code in your Android project is now even easier with Android Studio 3.1. This release has SQL code completion in your @Query declarations, better SQL statement refactoring, and SQL code navigation across your project. Learn more.

Room Database code completion

  • IntelliJ Platform Update: Android Studio 3.1 includes the IntelliJ 2017.3.3 platform release, which has many new features such as new Kotlin language intentions and built-in support for SVG image preview. Learn more.

Build

  • D8 Dex Compiler D8 is now the default dex compiler in Android Studio 3.1. Replacing the legacy DX compiler, D8 dexing is an under the hood APK compilation step that makes your app size smaller, enables accurate step debugging, and many times leads to faster builds. Ensure that your gradle.properties either has no android.enableD8 flag, or if it does ensure that it is set to true. Learn more.
  • New Build Output Window – Android Studio 3.1 has an updated Build output window which organizes build status and errors in a new tree view. This change also consolidates the legacy Gradle output into this new window. Learn more.

New Build Output Window

Test

  • Quick Boot Quick Boot allows you to resume your Android Emulator session in under 6 seconds. Slow start time on the Android Emulator was a major pain point we heard from you and Quick Boot solves this issue. Like a physical Android device, the emulator must perform an initial cold boot, but subsequent starts are fast. The feature is enabled by default for all Android Virtual Devices. Additionally, in this release, you have finer grain controls of when to use Quick Boot and the ability to save the quick boot state on demand under the emulator settings page. Learn more of other top Android Emulator Features.

Quick Boot On Demand Setting

  • System Images and Frameless Device Skins – The latest version of the Android Emulator now supports the Google Play Store and Google APIs on API 24 (Nougat) – API 27 (Oreo) emulator systems images as well as the P Developer Preview. Additionally the device emulator skins are updated to work in a new frameless mode, which can help you test your app with 18:9 screen aspect ratios, or Android P Developer Preview DisplayCutout APIs. Learn more.

Window frameless mode in the Android Emulator

Optimize

  • C++ CPU Profiling Last year with Android Studio 3.0, we launched a brand new set of Android profilers to measure the CPU, Memory, and Network Activity in your app. With Android Studio 3.1, in addition to performance profiling your Kotlin and Java language app code, you can now profile your C++ code in your app. Using simpleperf as backend, the C++ profiler allows you to record C++ method traces. Learn more.

C++ CPU Profiler

  • Network Profiler Updates: Threads & Network Request To aid with analyzing network traffic in your app, we added a new Network Thread view to inspect multithreaded network traffic, and we also added a new Network Request tab to dig into the network requests over time. With these updates to the Network Profiler you will have additional tools to trace the network traffic from each thread and network request all the way down through the network call stack. Learn more.

Network Profiler with thread support

To recap, Android Studio 3.1 includes these new major features:

Develop

  • Kotlin Lint Checks
  • Database Code Editing
  • IntelliJ Platform Update

Build

  • D8 Dex Compiler
  • New Build Output Window

Test & Debug

  • Quick Boot for Android Emulator
  • API 27 with Google Play Emulator System Images
  • Window frameless mode for Android Emulator

Optimize

  • C++ Profiler
  • Network Profiler – Thread Support
  • Network Profiler – Request Support

Check out the release notes for more details.

Getting Started

Download

If you are using a previous version of Android Studio, you can upgrade to Android Studio 3.1 today or you can download the update from the official Android Studio download page.

We appreciate any feedback on things you like, issues or features you would like to see. If you find a bug or issue, feel free to file an issue. Connect with us — the Android Studio development team ‐ on our Google+ page or on Twitter.

Accelerating digital transformation with the spring 2018 release for Dynamics 365 and Business Application Platform

This collection of integrated capabilities spanning the Microsoft Cloud supercharge Dynamics 365, creating what we believe is an unmatched platform for digital transformation.

The post Accelerating digital transformation with the spring 2018 release for Dynamics 365 and Business Application Platform appeared first on The Official Microsoft Blog.

Activity Recognition’s new Transition API makes context-aware features accessible to all developers

Posted by Marc Stogaitis, Tajinder Gadh, and Michael Cai, Android Activity Recognition Team

Phones are our most personal devices we bring with us everywhere, but until now it’s been hard for apps to adjust their experience to a user’s continually changing environment and activity. We’ve heard from developer after developer that they’re spending valuable engineering time to combine various signals like location and sensor data just to determine when the user has started or ended an activity like walking or driving. Even worse, when apps are independently and continuously checking for changes in user activity, battery life suffers. That’s why today, we’re excited to make the Activity Recognition Transition API available to all Android developers – a simple API that does all the processing for you and just tells you what you actually care about: when a user’s activity has changed.

Since November of last year, the Transition API has been working behind the scenes to power the Driving Do-Not-Disturb feature launched on the Pixel 2. While it might seem simple to turn on Do-Not-Disturb when car motion is detected by the phone’s sensors, many tricky challenges arise in practice. How can you tell if stillness means the user parked their car and ended a drive or simply stopped at a traffic light and will continue on? Should you trust a spike in a non-driving activity or is it a momentary classification error? With the Transition API, all Android developers can now leverage the same sets of training data and algorithmic filtering used by Google to confidently detect these changes in user activity.

Intuit partnered with us to test the Transition API and found it an ideal solution for their QuickBooks Self-Employed app:

“QuickBooks Self-Employed helps self-employed workers maximize their deductions at tax time by importing transactions and automatically tracking car mileage. Before the Transition API, we created our own solution to track mileage that combined GPS, phone sensors, and other metadata, but due to the wide variability in Android devices, our algorithm wasn’t 100% accurate and some users reported missing or incomplete trips. We were able to build a proof-of-concept using the Transition API in a matter of days and it has now replaced our existing solution, offering a more reliable solution that also reduced our battery consumption. The Transition API frees us up to focus our efforts on being the best possible tax solution,” say Pranay Airan and Mithun Mahadevan from Intuit.

Automatic mileage tracking in QuickBooks Self-Employed

Life360 similarly implemented the Transition API in their app with significant improvements in activity detection latency and battery consumption:

“With over 10 million active families, Life360 is the world’s largest mobile app for families. Our mission is to become the must-have Family Membership that gives families peace of mind anytime and anywhere. Today we do that through location sharing and 24/7 safety features like monitoring driving behavior of family members, so measuring activities accurately and with minimal battery drain is critical. To determine when a user has started or finished a drive, our app previously relied on a combination of geofences, the Fused Location Provider API and the Activity Recognition API, but there were many challenges with that approach including how to quickly detect the start of the drive without excessively draining battery and interpreting the granular and rapidly changing reading from the raw Activity Recognition API. But in testing the Transition API, we are seeing higher accuracy and reduced battery drain over our previous solution, more than meeting our needs,” says Dylan Keil from Life360.

Live location sharing in Life360

In the coming months, we will continue adding new activities to the Transition API to support even more kinds of context-aware features on Android like differentiating between road and rail vehicles. If you’re ready to use the Transition API in your app, check out our API guide.

Our big bet on mobile games at Game Developers Conference 2018

Posted by Benjamin Frenkel, Product Manager, Google Play Instant

We’ve been working hard to make Google Play the premier platform for game discovery and a place for you to grow your business. In the last year, the number of Android users who installed a game has more than doubled. Nearly 40% of that growth came from emerging markets, including Brazil, India, Indonesia and Mexico. Our investments extend beyond the Play Store and include many key Google products:

  • Last week, we introduced a gaming solution from Google Maps APIs that enables you to build game worlds based on real world data to find the best places for gameplay.
  • We also launched Agones, an open source, dedicated game server hosting product built on Google Cloud Platform, in collaboration with Ubisoft, to support multiplayer games.
  • At last month’s Mobile World Congress, we released version 1.0 of ARCore, our augmented reality SDK for Android, enabling you to publish AR apps and games to Google Play for the first time and reach 100M devices across the Android ecosystem.
  • Over the next few months, we’ll roll out a beta for click-to-play video ads on Google Play—a new way to reach players with sight, sound and motion. These placements will help you showcase your games.

Today, during our annual Google Developer Day at the Game Developers Conference, we introduced new tools and platforms to improve the overall game discovery on Google Play and give you more ways to deliver engaging player experiences.

Introducing Google Play Instant

With all the great games available on Google Play, we want to make discovery easier and remove friction during the install process. Installing and opening a game takes time and results in many players never getting to experience your game. We’re thrilled to announce that instant apps is now available for games.

This means that with a tap, players can try a game without having to download it first. Games available instantly today include: Clash Royale, Words with Friends 2, and Bubble Witch 3 Saga, and other titles from Playtika, MZ, Jam City, and Hothead Games.

We’re calling this new experience Google Play Instant. To try it out, simply launch the Google Play Store on your Android device and visit the Instant Gameplay collection. Or, you can visit the “Arcade” in our redesigned Google Play Games app and launch any of the “Instant Gameplay” collection games. Google Play Instant makes it easier to have your players invite their friends to try out games right away through social invites and lets you share games through marketing campaigns.

Google Play Instant is still in closed beta and we look forward to opening it more broadly later this year. It provides a collection of extensions to the instant apps framework that better support the needs of game developers; including a higher APK size limit to 10MB, progressive download support for executable code and game assets, and support for NDK and game engines using existing tool chains. We’re also working with popular game development platform Unity, and others including Cocos, to add IDE support making it easy for developers to build instant apps. Developers can sign up for more information about Google Play Instant as it becomes available.

Discover insights from game developers who have successfully benefited from Google Play Instant. Read how Zynga, King, Hothead Games, Jam City, Playtika, MZ and Magma Mobile successfully used instant apps to acquire new users, improve retention, and effectively cross-promote their games.

Google Play Console tools to build high quality games

We also added some useful tools to the Play Console to help you build great games, including:

  • A new internal testing track that will allow you to quickly test and iterate on new games and features. The track is additional to the alpha and beta testing tracks, and makes your game available for up to 100 testers within seconds.
  • Demo loops for the pre-launch report, a new feature that lets you predefine a likely series of actions in a game and have this “loop” run on on live devices in the Test Lab (bypassing the robo crawler).

This is just the start of what we have planned for 2018. We can’t wait to see Google Play Instant bring new audiences to your games.

Android Security 2017 Year in Review

Originally posted by Dave Kleidermacher, Vice President of Security for Android, Play, ChromeOS, on the Google Security Blog

Our team’s goal is simple: secure more than two billion Android devices. It’s our entire focus, and we’re constantly working to improve our protections to keep users safe.

Today, we’re releasing our fourth annual Android security year in review. We compile these reports to help educate the public about the many different layers of Android security, and also to hold ourselves accountable so that anyone can track our security work over time.

We saw some really positive momentum last year and this post includes some, but not nearly all, of the major moments from 2017. To dive into all the details, you can read the full report at: g.co/AndroidSecurityReport2017

Google Play Protect

In May, we announced Google Play Protect, a new home for the suite of Android security services on nearly two billion devices. While many of Play Protect’s features had been securing Android devices for years, we wanted to make these more visible to help assure people that our security protections are constantly working to keep them safe.

Play Protect’s core objective is to shield users from Potentially Harmful Apps, or PHAs. Every day, it automatically reviews more than 50 billion apps, other potential sources of PHAs, and devices themselves and takes action when it finds any.

Play Protect uses a variety of different tactics to keep users and their data safe, but the impact of machine learning is already quite significant: 60.3% of all Potentially Harmful Apps were detected via machine learning, and we expect this to increase in the future.

Protecting users’ devices

Play Protect automatically checks Android devices for PHAs at least once every day, and users can conduct an additional review at any time for some extra peace of mind. These automatic reviews enabled us to remove nearly 39 million PHAs last year.

We also update Play Protect to respond to trends that we detect across the ecosystem. For instance, we recognized that nearly 35% of new PHA installations were occurring when a device was offline or had lost network connectivity. As a result, in October 2017, we enabled offline scanning in Play Protect, and have since prevented 10 million more PHA installs.

Preventing PHA downloads

Devices that downloaded apps exclusively from Google Play were nine times less likely to get a PHA than devices that downloaded apps from other sources. And these security protections continue to improve, partially because of Play Protect’s increased visibility into newly submitted apps to Play. It reviewed 65% more Play apps compared to 2016.

Play Protect also doesn’t just secure Google Play—it helps protect the broader Android ecosystem as well. Thanks in large part to Play Protect, the installation rates of PHAs from outside of Google Play dropped by more than 60%.

Security updates

While Google Play Protect is a great shield against harmful PHAs, we also partner with device manufacturers to make sure that the version of Android running on user devices is up-to-date and secure.

Throughout the year, we worked to improve the process for releasing security updates, and 30% more devices received security patches than in 2016. Furthermore, no critical security vulnerabilities affecting the Android platform were publicly disclosed without an update or mitigation available for Android devices. This was possible due to the Android Security Rewards Program, enhanced collaboration with the security researcher community, coordination with industry partners, and built-in security features of the Android platform.

New security features in Android Oreo

We introduced a slew of new security features in Android Oreo: making it safer to get apps, dropping insecure network protocols, providing more user control over identifiers, hardening the kernel, and more.

We highlighted many of these over the course of the year, but some may have flown under the radar. For example, we updated the overlay API so that apps can no longer block the entire screen and prevent you from dismissing them, a common tactic employed by ransomware.

Openness makes Android security stronger

We’ve long said it, but it remains truer than ever: Android’s openness helps strengthen our security protections. For years, the Android ecosystem has benefitted from researchers’ findings, and 2017 was no different.

Security reward programs

We continued to see great momentum with our Android Security Rewards program: we paid researchers $1.28 million, totalling more than two million dollars since the start of the program. We also increased our top-line payouts for exploits that compromise TrustZone or Verified Boot from $50,000 to $200,000, and remote kernel exploits from $30,000 to $150,000.

In parallel, we also introduced Google Play Security Rewards program and offered a bonus bounty to developers that discover and disclose select critical vulnerabilities in apps hosted on Play to their developers.

External security competitions

Our teams also participated in external vulnerability discovery and disclosure competitions, such as Mobile Pwn2Own. At the 2017 Mobile Pwn2Own competition, no exploits successfully compromised the Google Pixel. And of the exploits demonstrated against devices running Android, none could be reproduced on a device running unmodified Android source code from the Android Open Source Project (AOSP).

We’re pleased to see the positive momentum behind Android security, and we’ll continue our work to improve our protections this year, and beyond. We will never stop our work to ensure the security of Android users.

Microsoft expands cloud services in Europe and into Middle East to meet growing customer demand

I’m thrilled to share that we plan to deliver the Microsoft Cloud from our first datacenter locations in Switzerland and the United Arab Emirates, and we’ll expand the cloud options for customers in Germany. I’m also excited to reveal that the Microsoft Cloud in France is officially open with the general availability of Microsoft Azure…

The post Microsoft expands cloud services in Europe and into Middle East to meet growing customer demand appeared first on The Official Microsoft Blog.

Cryptography Changes in Android P

Posted by Adam Vartanian, Software Engineer

We hope you’re enjoying the first developer preview of Android P. We wanted to specifically call out some backward-incompatible changes we plan to make to the cryptographic capabilities in Android P, which you can see in the developer preview.

Changes to providers

Starting in Android P, we plan to deprecate some functionality from the BC provider that’s duplicated by the AndroidOpenSSL (also known as Conscrypt) provider. This will only affect applications that specify the BC provider explicitly when calling getInstance() methods. To be clear, we aren’t doing this because we are concerned about the security of the implementations from the BC provider, rather because having duplicated functionality imposes additional costs and risks while not providing much benefit.

If you don’t specify a provider in your getInstance() calls, no changes are required.

If you specify the provider by name or by instance—for example, Cipher.getInstance("AES/CBC/PKCS7PADDING", "BC") or Cipher.getInstance("AES/CBC/PKCS7PADDING", Security.getProvider("BC"))—the behavior you get in Android P will depend on what API level your application targets. For apps targeting an API level before P, the call will return the BC implementation and log a warning in the application log. For apps targeting Android P or later, the call will throw NoSuchAlgorithmException.

To resolve this, you should stop specifying a provider and use the default implementation.

In a later Android release, we plan to remove the deprecated functionality from the BC provider entirely. Once removed, any call that requests that functionality from the BC provider (whether by name or instance) will throw NoSuchAlgorithmException.

Removal of the Crypto provider

In a previous post, we announced that the Crypto provider was deprecated beginning in Android Nougat. Since then, any request for the Crypto provider by an application targeting API 23 (Marshmallow) or before would succeed, but requests by applications targeting API 24 (Nougat) or later would fail. In Android P, we plan to remove the Crypto provider entirely. Once removed, any call to SecureRandom.getInstance("SHA1PRNG", "Crypto") will throw NoSuchProviderException. Please ensure your apps have been updated.

Auphonic add-ons for Audition and Premiere Pro

Our friends at Auphonic recently unveiled new Auphonic Audio Post-Production Add-ons for Audition and Premiere Pro, on both Mac and Windows.  These extension panels bring the power of Auphonic’s automated processing and encoding tools directly into the Adobe workspace, making it easier than ever to send your projects back and forth. It is possible to export tracks/projects from […]

International Women’s Day: Three simple ways we can all #PressforProgress for women in STEM

Women around the world are taking to the streets on International Women’s Day to urge faster progress on gender parity in economic opportunity, education and other important issues. The theme this year, #PressforProgress, is perfectly tuned to the challenges society faces. I know what’s it’s like to be the “first woman.” It’s really lonely! It…

The post International Women’s Day: Three simple ways we can all #PressforProgress for women in STEM appeared first on The Official Microsoft Blog.